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Investigating Inter- and Intrasample Diversity of Single-Cell
RNA Sequencing Datasets

Meghan C. Ferrall-Fairbanks and Philipp M. Altrock

Abstract

Tumor heterogeneity can arise from a variety of extrinsic and intrinsic sources and drives unfavorable
outcomes. With recent technological advances, single-cell RNA sequencing has become a way for research-
ers to easily assay tumor heterogeneity at the transcriptomic level with high resolution. However, ongoing
research focuses on different ways to analyze this big data and how to compare across multiple different
samples. In this chapter, we provide a practical guide to calculate inter- and intrasample diversity metrics
from single-cell RNA sequencing datasets. These measures of diversity are adapted from commonly used
metrics in statistics and ecology to quantify and compare sample heterogeneity at single-cell resolution.
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1 Introduction

Intratumor heterogeneity (ITH) is a major determinant of tumor
progression, the evolution of resistance to therapy, and can fuel
tumor evolution and the development of metastasis. ITH is present
on multiple different levels, ranging from genetic [1] to epige-
netic/cell phenotypic [2, 3] and metabolic [4] to microenviron-
mental heterogeneity [5]. Single-cell DNA and RNA sequencing
have made it possible to identify ITH in a way that cannot be
captured by bulk sample profiling [6, 7], because they can, in
principle, characterize important differences or common features
on the level of the individual cell. Estimating cellular heterogeneity
by way of diversity and uncertainty about the identity of an individ-
ual in the context of others in a sample is thus an important task.
One important quantitative method to assess heterogeneity it by
calculating the degree of variation between individual entities,
which can be achieved using the concept of a diversity index
[8]. Here, we present a method to use single-cell RNA sequencing
data and clustering algorithms to calculate a general diversity index
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in order to estimate intratumor heterogeneity, and use it as a
starting point for clinical correlations [9], or mathematical model-
ing [10, 11].

ITH is of clinical interest because it serves as a reservoir for
therapeutic resistance and is likely a driver of clinical progression
with single and combination therapies, when targeted therapies.
The clinical implications of ITH have not been explored in all types
of cancer, on all scales of heterogeneity. Further, it is unknown
whether certain therapeutics could directly decrease ITH and thus
serve to mitigate this critical resistance mechanism. The primary
objective of this manuscript is to introduce a multiscale approach to
measure ITH using single-cell RNA sequencing. This method can
be applied downstream of a number of computational and statistical
approaches that integrates scRNA-seq data, and will become an
important step in the quest to generate foundational evidence
that ITH as a relevant clinical factor in those cancer types that
have been lacking behind in terms of describing and clinically
assessing tumor heterogeneity. Eventually, it would be the goal to
describe ITH such that it can be modified by, for example, epige-
netic therapeutics that either increase or reduce it to avert rapid
resistance evolution.

Single-cell RNA sequencing (scRNA-seq) can be used to
estimate cellular diversity, especially in the context of intratumor
heterogeneity. Novel scRNA-seq technologies have become a cost-
effective method to identify transcriptomic changes at high resolu-
tion. Intratumor heterogeneity can be identified for many disease at
various stages [12], and have the potential to bring about novel
ways to understand tumor evolution [13]. We build our method-
ology on the fact that single cell transcriptome profiling of leuke-
mias can directly measure intraleukemic heterogeneity (ILH). A
scRNA-seq study in chronic myeloid leukemia (CML) has demon-
strated that scRNA-seq was capable of segregating patients with
discordant responses to targeted tyrosine kinase inhibitor therapy
[14], and it was recently shown that scRNA-seq data-based cellular
diversity quantification can segregate various other healthy and
cancer states [15].

As a summary statistic for ILH we show how to calculate and
use a diversity index often applied in ecology [16, 17], using the
general nonspatial diversity index [18] called qD. This approach
considers diversity on all possible orders q, and allows to compare
states according to specific diversity indices, which emerge as special
cases (e.g., 0D, or 2D). The species (clonal) richness of a sample is
given by 0D. The Simpson index, that is, the probability that any
two cells are identical, emerges from 2D. Most notably, the Shan-
non index [19]—a measure of uncertainty about the state of the
heterogeneous cell population estimated from a subsample of it—
can be derived from the limit of q approaching the value of 1. These
indices have been used previously to quantify cancer heterogeneity
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[10, 11, 20]. This general representation of diversity allows flexi-
bility in the choice of the optimal q, potentially tailored for its
biological or clinical application.

1.1 Chapter Outline This chapter describes one established framework for quantifying
inter- and intrasample heterogeneity of single-cell RNA sequencing
experiments, followed by an example previously described compar-
ing these diversity metrics for acute myeloid leukemia (AML)
patients to healthy donors and discussion of interpretation of
these diversity metrics. The chapter concludes with notes about
how robustness and error of these types of metrics. The outline for
this chapter is as follows. Subheading 2 contains the computational
materials, including R libraries, and example single-cell RNA
sequencing datasets that can be used to gain an intuition of the
method. In Subheading 3, we present a single-cell RNA sequencing
quality control analysis, methods of data clustering, and the diver-
sity score calculation pipeline. Subheading 4 contains a worked
example of calculating a universal diversity metric, applied to an
AML dataset of four patient samples. Finally, in Subheading 5 we
present notes/discussion from the example R code.

2 Materials

The methods presented in this chapter are one way to calculate
diversity metrics applied to FASTQ files generated from single-cell
RNA sequencing experiments. The materials required include:

1. FASTQ dataset.

2. Cell Ranger Pipelines.

3. Statistical programming package R.

4. R libraries.

5. UMAP.

2.1 Count Matrix

Generation

Single-cell RNA sequencing (scRNA-seq) data is often exported or
postprocessed into a FASTQ file. FASTQ files are the most com-
mon way scRNA-seq data is stored in publicly available datasets.

2.1.1 Downloading

and Installing Tools

1. Download and install the Cell Ranger tar file on a Linux
distribution from the 10X Genomics website (https://sup
port.10xgenomics.com/single-cell-gene-expression/soft
ware/pipelines/latest/installation).

2. Install Seurat (version 3.0.0) package available on CRAN in R
on version 3.4 or greater [21, 22]. Additional packages that are
useful to speed up computation, especially if running these
analyses on a cluster include future to access multiple process
for parallelizing the Seurat commands and bigmemory.
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3. Install UMAP (and required dependencies) with python as
described on GitHub (https://github.com/lmcinnes/umap/
blob/master/README.rst) [23]. UMAP visualization for
clustered scRNA-seq data can be performed in R using the
Seurat package but requires that UMAP first be installed via
python.

2.2 Preparing Data

for Diversity Analysis

1. Run cellranger count on each sample fastq file. This creates a
number of output files, including a folder with the filtered
feature-barcode matrix containing a MEX formatted counts
matrix. cellranger count should be run on each sample’s
FASTQ file individually.

2. Once FASTQ files have been run through cellranger count,
open R Studio and initiate libraries using library(packagename)
for the following libraries: Matrix, dplyr, readr, rdetools, data.
table, ggplots2, iterators, Seurat.

3. Import data into R using the Read10X and then the Create-
SeuratObject commands. Use these two commands for each
additional sample. To create a multisample dataset, use the
merge command to merge the individual Seurat Objects.

3 Methods

This method was adapted and expanded from the tutorials for
analysis of single-cell RNA sequencing data from the developers
of the Seurat package [21, 22] in R available at: https://satijalab.
org/seurat/. These tools are not the only way to analyze single-cell
RNA sequencing data, but are best practices that we have found
useful in quantifying differences in diversity measures across differ-
ent polyclonal and malignant populations.

3.1 Quality Control

and Normalization

of Count Matrix

Raw datasets need to be corrected to remove batch effects. This can
be done by assessing the distribution of genes captured per cell in
the dataset and the individual dataset’s distribution of mitochon-
drial gene.

Typical gene distribution cutoff to determine which cells to include
in further analysis involved a lower limit of cells with at least
200 genes detected and an upper limit of genes detected as:

Mean number of genes detected � 2 � (standard deviation of
genes detected)

These gene distribution cutoffs are an attempt to avoid counting
doublet cells as distinct single-cells [24].

Typical mitochondrial DNA content upper cutoff is very problem
specific. A general rule of thumb is to exclude cells with over 5%
mitochondrial content. This cutoff is an attempt to exclude
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cells that are dying and may not be capturing the biology
researchers are interested in exploring [24]. This cutoff needs
to be increased for cell- and disease-specific cases, for example,
cardiac cells are known to have increased mitochondrial con-
tent and so the maximum mitochondrial content cutoff would
need to be increased.

These cutoffs to correct for doublet and high mitochondrial con-
tent concerns are implemented with by using the subset func-
tion on the full Seurat object dataset.

Then researchers can normalize and scale the expression data using
NormalizeData and ScaleData functions. One common normali-
zation technique is to normalize the feature expression for each cell
by the total expression. Scaling the data allows researchers to
removed unwanted sources of variation, including RNA count
information and mitochondrial content by shifting the expression
level to have a mean around 0 and variance across cells of 1.

3.2 Cluster Detection

3.2.1 Dimension

Reduction

Principal component analysis (PCA) is often performed on single-
cell RNA sequencing datasets to identify the largest sources of
variation in the dataset (i.e., the principal components) as well as
that some clustering algorithms require dimension reduced datasets
to be used with those algorithms. PCA is implemented on a Seurat
object using the RunPCA function. Dimension reduction can be
performed on the entire scaled dataset or on the subset of variable
feature gene set.

3.2.2 Community-Based

Detection Methods

Clustering the single cells based on similar expression profiles offers
an axis on which diversity can be quantified by across individual
samples. One approach used here is a graph-based clustering
approach, where the cells are embedded in a graph structures with
edges drawn between similar cells [21, 22]. The graph was then
partitioned into highly connected communities and the Louvain
algorithm is applied to optimize based on modularity. The mod-
ularity scores the quality of the optimized clusters. High modularity
reflects the presence of community structure in the graph [25]. For
our analysis, modularity less than 0.6 were further refined for lack
of community structure present in the network analyzed. High
confidences in community network structure are present in net-
works with modularity greater than 0.8. Using Seurat, cluster
determination is implemented by FindNeighbors and FindClusters
functions, respectively. In the FindClusters function, there is a
resolution parameter (defaulted at 0.6) that allows researchers to
adjust the granularity of downstream clustering. Increasing the
resolution parameter in FindClusters, increases the number of dis-
tinct clusters identified and should be optimized for large datasets.
Visualization of these clusters can be implemented using the
RunUMAP function that utilizes the principal component
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dimension reduction to create a 2D visualization of the clustered
data, which can be displayed using theDimPlot function to plot the
clustered dataset either by cluster identity or sample identity (or any
other meta data groupings added to the dataset).

3.3 Diversity Score

Calculation

3.3.1 Generalized

Diversity Index

The generalized diversity index takes the frequency of each sample
identity in each of the clusters identified in the dataset and quanti-
fies the diversity score that can be calculated over a range of resolu-
tion scales. The mathematical formulation is:

qD ¼
Xn

i¼1

p
q
i

 ! 1
1�q

where n is the number of clusters identified, pi is the frequency of
each cluster, and q is the resolution or “order of diversity.” The
most common diversity metrics, Shannon Entropy and Simpson
Index are permutations of this generalized index [26]. Shannon
entropy [27] is calculated by q ¼ 1 with log(1D) and the Simpson
index [28] is calculated by q ¼ 2 corresponding to 1/2D.

This generalized diversity index, qD, can be calculated from the
clustered data set by first counting the number of unique barcodes
per cluster, then grouping cells by cluster and then by sample type.
From the raw per-cluster-per-type grouping, the cell counts can be
converted to frequencies, which can be directly input the equation
for qD, which can be solved over a range of q (one range capturing
most dynamics if from 10�2 to 102).

3.3.2 Kolmogorov

Smirnov Distance

Another metric that can be used to quantify the differences
between samples is using the Kolmogorov Smirnov (KS) distance
between two discrete distributions. The KS distances is a nonpara-
metric test, where similar distributions have smaller KS distances.
The KS distance can be calculated by taking the probability mass
function for a given sample across all the clusters identified by the
aggregate dataset, converting that to a cumulative probability dis-
tribution. Then the KS distance is calculated using the supremum,
or least upper bound (practically, the maximum value of a finite set
of numbers)

dKS ¼ sup abs c1,i � c2,i
� �� �

where c1 and c2 are the cumulative probability function of two
different samples. The maximum value of the absolute differences
of the cumulative distributions is what is known as the KS distance.
Previously, we have shown the KS distances is smaller for like
samples (two healthy or two AML) and larger between different
samples (for example, healthy versus AML) [15].
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4 Example

4.1 Background In this section, we demonstrate how inter- and intrasample diversity
may be used to quantify the bone marrow mononuclear cell
(BMMC) heterogeneity of two acute myeloid leukemia (AML)
patients compared to BMMCs of two healthy donors previously
described in Ferrall-Fairbanks et al. [15] and code publicly avail-
able. This draws upon existing, publicly available data from Zheng
et al. [6].

4.2 Method Download the AML dataset (https://github.com/MathOnco/
scRNA-seqITH/blob/master/Pipelines/data/AML-Data.zip)
and R code (https://github.com/MathOnco/scRNAseqITH/
blob/master/Pipelines/MiMB-Diversity-Pipeline.R) from
GitHub to follow along with the worked-example of quantifying
heterogeneity between two healthy donor and two AML BMMCs
(see Notes 1 and 2).

5 Notes

1. Metric interpretation
Quantifying a generalized diversity metric enabled us to

distinguish between leukemic states based on the high-
dimensional single-cell patient samples. From an ecological
perspective, diversity can be measured across a number of
different spatial scales and by solving for a continuum of diver-
sity indices we can examine a sample’s diversity across these
scales. For low q, generalized diversity index (GDI) represents
the clonal richness, assuming that clusters of similar gene
expression represent a ‘clone’ and as q approaches 0, 0D
becomes the number of clusters identified. On the other side
of the spatial scale, for high q, the contribution of the major
clone(s) is weighted more, attempting to quantify species even-
ness. In a clinical setting, this would likely represent the domi-
nant one or two phenotypes of tumor, that are easily detected
by clinicians and may drive therapy selection. Intermediate
values of q correspond to classical measures of sample diversity,
such as Shannon index (H, q ¼ 1) [27] that has been used in
oncology to analyze tumor evolution and single-cell tumor
imaging data [29]. We have seen that diversity scores can be
very similar around q¼ 1 and as a result the Shannon index can
therefore be a problematic diversity indicator. However, GDI
at a range of q, point to differences in the number of major
drivers of tumor evolution, possibly prior to detection/
sampling.
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2. Robustness
One limitation of scRNA-seq is that missing data does not

necessarily reflect that those transcripts are not expressed in the
sample. In scRNAseq, any given cell only captures at most
about 10% of the whole transcriptome, but in aggregation
with other single cells, the entire genome is covered. As a result,
in order to test the robustness this diversity metric, one can
down-sampled their dataset and cluster to determine how the
diversity index may change with the subset dataset. In Ferrall-
Fairbanks et al., we down-sampled the dataset by randomly
removing as much as 50% of the cells from each of the healthy
and AML samples (this was repeated 1000 times) and found
that the clustering did not change more than 1–2 clusters in
either direction. With these new clustering, if the AML diver-
sity curve was shifted down two units and healthy diversity
curve was shifted up two units, you still would have separation
between the conditions, suggesting that this metric is pretty
robust. Furthermore, during this down-sampling exercise, we
found that if we down-sampled to roughly 1500 cells, we
would often capture the same number of clusters as the full
dataset, suggesting that at least for this AML versus healthy
BMMC comparisons, 1500 cells is a lower limit of cells needed
to capture these diversity dynamics.

6 Summary

Translational bioinformatics is an emerging field at the intersection
of molecular bioinformatics, statistics, and clinical applications. In
the age of ever refined molecular insights in large data sets, it is
important to develop pipelines that allow effective integration and
biological interpretation with a focus on cancer evolution. Impor-
tantly, these pipelines have to scale when applied to large data sets,
as well as deliver biological interpretation. With the pipeline
described here, we have provided the theoretical and computational
basis for tools that allow quantification and comparing diversity
sample diversity at single cell resolution. The generalized diversity
score applied to single cell sequencing samples allows comparing
heterogeneity across different normal andmalignant samples, and is
based on clustering of single cell data. Hereby, particular choices of
imputation and clustering procedures [30, 31] and batch correc-
tion [32, 33]—likely to undergo further development in the near
future [34]—can be integrated into this concept—our method
does not rely on a particular clustering algorithm.

Further therapeutic target development can be gleaned from
the diversity analysis by exploring differentially expressed gene
signatures between normal and malignant patients, or between
different patients of different stages. How the measure of diversity,
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and the associated gene signatures, change over time in a given
patient may also offer important insights into therapeutically rele-
vant targets, which needs to be explored further.
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