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Simple Summary: Cancer-associated fibroblasts (CAFs) are highly prevalent cells in the clear cell

renal cell carcinoma (ccRCC) tumor immune microenvironment. CAFs are thought to potentiate

tumor proliferation primarily through paracrine interactions, as evidenced by laboratory-based

studies. We sought to corroborate these findings using surgically removed tissue samples from 96

patients with metastatic ccRCC and associate geospatial relationships between CAFs and rapidly

proliferating tumor cells with survival outcomes. We found that CAFs exhibited more geospatial

clustering with proliferating tumor cells than with dying tumor cells, and patients whose samples

exhibited higher tumor cell proliferation had worse overall survival and were more likely to be

resistant to systemic tyrosine-kinase-inhibiting targeted therapies. Immunotherapy resistance was

not associated with the geospatial metrics measured in this analysis. Overall, these findings suggest

that close proximity to CAFs potentiates tumor cell proliferation, worsening survival and conferring

resistance to targeted therapies.

Abstract: Cancer-associated fibroblasts (CAF) are highly prevalent cells in the tumor microenvi-

ronment in clear cell renal cell carcinoma (ccRCC). CAFs exhibit a pro-tumor effect in vitro and

have been implicated in tumor cell proliferation, metastasis, and treatment resistance. Our objective

is to analyze the geospatial distribution of CAFs with proliferating and apoptotic tumor cells in

the ccRCC tumor microenvironment and determine associations with survival and systemic treat-

ment. Pre-treatment primary tumor samples were collected from 96 patients with metastatic ccRCC.

Three adjacent slices were obtained from 2 tumor-core regions of interest (ROI) per patient, and

immunohistochemistry (IHC) staining was performed for αSMA, Ki-67, and caspase-3 to detect CAFs,
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proliferating cells, and apoptotic cells, respectively. H-scores and cellular density were generated for

each marker. ROIs were aligned, and spatial point patterns were generated, which were then used to

perform spatial analyses using a normalized Ripley’s K function at a radius of 25 µm (nK(25)). The

survival analyses used an optimal cut-point method, maximizing the log-rank statistic, to stratify

the IHC-derived metrics into high and low groups. Multivariable Cox regression analyses were

performed accounting for age and International Metastatic RCC Database Consortium (IMDC) risk

category. Survival outcomes included overall survival (OS) from the date of diagnosis, OS from

the date of immunotherapy initiation (OS-IT), and OS from the date of targeted therapy initiation

(OS-TT). Therapy resistance was defined as progression-free survival (PFS) <6 months, and therapy

response was defined as PFS >9 months. CAFs exhibited higher cellular clustering with Ki-67+ cells

than with caspase-3+ cells (nK(25): Ki-67 1.19; caspase-3 1.05; p = 0.04). The median nearest neighbor

(NN) distance from CAFs to Ki-67+ cells was shorter compared to caspase-3+ cells (15 µm vs. 37 µm,

respectively; p < 0.001). Multivariable Cox regression analyses demonstrated that both high Ki-67+

density and H-score were associated with worse OS, OS-IT, and OS-TT. Regarding αSMA+CAFs, only

a high H-score was associated with worse OS, OS-IT, and OS-TT. For caspase-3+, high H-score and

density were associated with worse OS and OS-TT. Patients whose tumors were resistant to targeted

therapy (TT) had higher Ki-67 density and H-scores than those who had TT responses. Overall, this

ex vivo geospatial analysis of CAF distribution suggests that close proximity clustering of tumor

cells and CAFs potentiates tumor cell proliferation, resulting in worse OS and resistance to TT in

metastatic ccRCC.

Keywords: metastatic clear cell renal cell carcinoma; cancer associated fibroblasts; Ki-67; spatial

analysis; immunohistochemistry

1. Introduction

In normal tissue, fibroblast activation and the subsequent release of cytokines, angio-
genic mediators, and growth factors are physiologic responses to tissue injury or stress [1,2].
Cancer-associated fibroblasts (CAF) are fibroblasts that have been permanently activated
by adjacent tumor cells, which repurpose physiologic fibroblast activity into a pro-tumor
survival advantage [1–3]. CAFs are highly prevalent cells in the tumor microenviron-
ment in clear cell renal cell carcinoma (ccRCC) and have been implicated in facilitating
tumor cell proliferation, angiogenesis, metastasis, and therapy resistance [4–6]. Several
well-described pro-tumor properties of CAFs are mediated through hypoxia-inducible-
factor-1 (HIF1), a pathway that drives oncogenesis in kidney cancer and is upregulated
in the majority of ccRCC tumors via alteration of the von-Hippel Lindau (VHL) gene [7].
Additionally, molecular receptors mediating the HIF1 pathway are the primary targets for
tyrosine-kinase–inhibiting targeted therapies (TT), which are frequently used in metastatic
ccRCC [8]. Previous work has demonstrated that increased CAF density in ccRCC tumors
is associated with worse overall survival (OS) [4,6].

The induction of tumor cell proliferation has been postulated as a major mechanism of
CAF-mediated pro-tumor activity [1]. Immunohistochemical (IHC) staining with Ki-67, a
nuclear protein that is present during active phases of the cell cycle and absent from resting
cells, has been shown to be an excellent marker for identifying rapidly proliferating tumor
cells [9,10]. This staining is clinically relevant for grading and prognosis in several primary
cancer sites, including breast and colorectal cancers [11–13]. Currently, there is no role for
Ki-67 staining in ccRCC guideline-based clinical practice, though a handful of studies have
associated high Ki-67 staining with more advanced disease stage, worse OS, and worse
cancer-specific survival (CSS) [14–17].

Despite the well-described in vitro relationship between CAFs and increased tumor
cell proliferation, no prior study has investigated the interplay between CAFs and rapidly
proliferating tumor cells in ccRCC tumor samples. The discovery of distinct infiltration
patterns and spatial relationships between CAFs and rapidly proliferating tumor cells could
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support previous in vitro study findings with ex vivo evidence and inform ongoing research
into microenvironment-modulating antineoplastic therapies targeting fibroblasts [18]. Our
primary objective was to investigate cellular distribution patterns and spatial relationships
between CAFs and proliferating and apoptotic tumor cells in primary tumor samples
from patients with metastatic ccRCC. Additionally, to evaluate the associations between
these measures and OS. Our secondary objective was to determine associations between
treatment outcomes and targeted therapy and immunotherapy, as well as define spatial
relationships between CAFs, proliferating tumors cells, and apoptotic tumor cells.

2. Materials and Methods

2.1. Patient and Sample Selection

Samples were included from patients with primary ccRCC who had metastatic ccRCC
at the time of sample collection and whose tumor specimens were available in formalin-
fixed paraffin-embedded blocks. Included patients had received either TT, immunotherapy
(IT), or combination TT/IT as systemic treatment from October 2004 to September 2020.
Written informed consent was obtained from all tissue donors. All tumor and normal tissue
samples were obtained through protocols approved by the institutional review board (H.
Lee Moffitt Cancer Center and Research Institute’s Total Cancer Care protocol MCC# 14690;
Advarra IRB Pro00014441). The general workflow of our methods is shown in Figure 1.

view board (H. Lee Moffitt Cancer Center and Research Institute’s Total Cancer Care pro-

Figure 1. General project workflow for the analysis.

2.2. Immunohistochemical Specimen Preparation

Three immediately adjacent slides (3 µm thickness) were prepared from each tissue
block. IHC staining for alpha-smooth muscle actin ((αSMA a marker for activated fibrob-
lasts), Ki-67 (a marker for proliferating cells), and caspase-3 (a marker for cells undergoing
apoptosis) were performed; 1 stain was used on each slide. Slides were stained using a
Ventana Discovery XT automated system (Ventana Medical Systems, Tucson, AZ, USA)
as per manufacturer’s protocol, with proprietary reagents. Briefly, slides were deparaf-
finized on the automated system with the EZ Prep solution (Ventana). A heat-induced
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antigen retrieval method was used in Cell Conditioning (Ventana). The rabbit primary
antibody that reacts to Ki-67 (#790-4286 (Ventana)) was used at a prediluted strength
and incubated for 16 min. The rabbit primary antibody that reacts to Cleaved Caspase 3
(#9661 (Cell Signaling, Danvers, MA, USA)) was used at a 1:4000 concentration in Dako
antibody diluent (Carpenteria, CA, USA) and incubated for 60 min. The rabbit primary
antibody that reacts to αSMA (#ab32575 (Abcam, Cambridge, MA, USA)) was used at a
1:250 concentration in Dako antibody diluent (Carpenteria, CA, USA) and incubated for
32 min. For all stains, the Ventana OmniMap Anti-Rabbit Secondary Antibody was used
for 16 min. The detection system used was the Ventana ChromoMap kit, and slides were
then counterstained with hematoxylin. Slides were then dehydrated and cover-slipped as
per normal laboratory protocol.

2.3. Quantitative Digital Image Analysis

Slides were digitized with a Leica Aperio AT2 slide scanner (Vista, CA, USA) using
a 20 X/0.75 NA objective lens. An experienced genitourinary pathologist (JD) used the
annotation pen tool in the Aperio Imagescope software to define the tumor-core zone in
each hematoxylin and eosin image. High-resolution Aperio SVS images representing the 3
IHC stains were imported into Visiopharm (Hoersholm, Denmark) for quantitative digital
image analysis. We leveraged a tissue alignment algorithm available in Visiopharm to
optimally align 3 adjacent slides of each patient sample set. These slides were visually
inspected to ensure appropriate alignment. Two equally sized regions of interest (ROI)
were selected from the tumor-core zone from each image; tumor cells were evenly dis-
tributed throughout each ROI, and cellular appearance was consistent with that seen in
the remainder of the slide. The ROI sizes were standardized at 3426 × 1379 pixels, at
a pixel resolution of 0.502 µm/pixel. Thresholds for staining positivity were set by an
experienced digital pathology image analyst (JJ) and confirmed by a study pathologist (JD).
These thresholds were used with Visiopharm’s cell detection algorithms to identify and
categorize cells into negative, weak, moderate, and strong bins on the basis of staining
intensity. This intensity-based distribution of cells is comparable to the qualitative method
used by pathologists, in which staining intensity is categorized as 0, 1+, 2+, and 3+ [19].
Percent positivity and H-Scores were calculated for each ROI using this intensity data.
H-score is an approach that globally quantifies intensity and percent positivity throughout
the entire ROI into 1 score, according to the following formula: H-score = (1 × (%cells
weak)) + (2 × (%cells moderate)) + (3 × (%cells strong)) [20]. H-scores range from 0 to 300,
with 0 representing no cell staining for the marker of interest and 300 representing every
cell staining with the highest intensity [20]. Additionally, Cartesian coordinates for the
(x,y) location of each cell’s central mass, with each cell’s associated marker status, were
abstracted from the digital image using Visiopharm.

2.4. Cellular Distribution and Spatial Analysis

For each ROI, the per-cell Cartesian coordinate and marker positivity data were
converted into spatial point patterns. Cell density was calculated as the number of positive
cells per mm2. ROIs containing ≥10 cells positive for a relevant marker were considered
eligible for spatial analysis. As there is no previously validated standard for this cutoff,
the ≥10 cell cutoff was agreed upon through the consensus of the authors. Cells classified
as exhibiting strong staining intensity, as defined above, were considered positive for the
purpose of spatial analysis. Cellular clustering was quantified using Ripley’s K function, a
methodology for quantifying spatial heterogeneity that is most commonly used in ecology
and economics, with isotropic edge correction, and the following normalization was
applied: nK(r) = K(r)/πr2, as described previously [21,22]. As such, the expected value of
nK(r) for complete spatial randomness is 1.0, assuming a homogenous Poisson process [21].
Values of nK(r) > 1.0 represent cellular clustering and values < 1.0 represent cellular
dispersion. The range of possible values for nK(r) is 0 to infinity. The nK(r) value is an
observed over expected ratio (i.e., αSMA/Ki-67 nK(25 µm) = 1.30 can be interpreted as:
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“There were 30% more Ki-67+ cells within a 25 µm radius of each αSMA cell than would be
expected if the cells were randomly distributed.”).

Initially, two search-circle radii were utilized for the spatial analysis. To reflect cellular
clustering at a localized distance, nK(r) at a radius of 25 µm was used in this analysis
and will henceforth be referred to as nK(25). The search-circle radius value of 25 µm
was selected, as it represents approximately double that of a typical ccRCC tumor cell
radius and, as such, should represent the area in the immediate vicinity of the cell. To
reflect a more global view of cellular clustering, a radius of 125 µm was utilized, which
will be referenced as nK(125). Subsequently, we determined that Spearman’s correlations
demonstrated a very strong correlation between nK(25) and nK(125) (r > 0.90). Given this
redundancy, we utilized nK(25), not nK(125), for the remainder of the analysis.

As a second independent measure of spatial analysis, linear nearest neighbor distances
were determined from each cell to its nearest neighbor cell among each of the 3 cell types.
Scaled two-dimensional kernel density plots were generated to analyze the distribution of
nearest neighbor distances from each αSMA+ cell to its nearest neighbor caspase-3+ and
Ki-67+ cell. These nearest neighbor density plots were generated with the cohort stratified
by ccRCC versus normal kidney, treatment response versus resistance to TT, and treatment
response versus resistance to IT.

2.5. Variable Definitions

Age was defined as life years at the time of ccRCC diagnosis. Tumor grade was defined
per the histologic classification criteria proposed by the International Society of Urologic
Pathologists and implemented by the World Health Organization (ISUP/WHO) [23]. In-
ternational Metastatic RCC Database (IMDC) scores were determined for each patient and
categorized into good, intermediate, and poor risk groups, as previously described [24].
OS was determined from the date of metastatic ccRCC diagnosis to the date of death or
censoring at the last follow-up. Treatments classified as IT included both immune check-
point inhibitors and high-dose interleukin-2 (IL-2). Treatments classified as TT included
small-molecule tyrosine-kinase-inhibiting therapies approved for first-line treatment in
ccRCC [17]. OS from the date of the first receipt of IT (OS-IT) and OS from the date of first
receipt of TT (OS-TT) were also determined. Response to therapy was defined as clinical
progression-free survival greater than 9 months from treatment initiation, and resistance
was defined as progression <6 months from treatment initiation. Patients who progressed
between 6 and 9 months after initiating therapy were not classified as responsive or resistant.
Statistical significance was defined as a two-tailed alpha-risk of 0.05 or less.

2.6. Statistical Analysis

In addition to demographic, clinical, and pathologic characteristics, patient-level
data included marker densities and intensities, H-scores, and uni- and bi-variate spatial
distribution metrics for each of the 3 included IHC markers. As each patient had 2 ROIs
analyzed, the IHC-derived metrics were averaged such that each patient had 1 value for
each metric. Spearman’s correlation coefficients were determined between each pairwise
combination to assess the interactions between the IHC-derived metrics.

As standardized cutoffs do not exist for the IHC-derived metrics utilized in this
analysis, optimal cut-points were determined for each metric, maximizing the log-rank test
statistics for OS, as previously described [25]. The survival analysis used a multivariable
Cox proportional hazards regression for each metric, utilizing age and IMDC risk category
as covariates. False discovery rate- (FDR-)adjusted p values were calculated for multiple
comparison correction. This analysis was repeated for the OS-IT and OS-TT endpoints.

Patients were then stratified by response or non-response to IT and TT, and values of
each IHC-derived metric were compared between responders and non-responders using a
two-sample t-test.

The distribution of nearest neighbor distances from αSMA+ cells to their nearest
caspase-3+ cell was compared to that of the distance to the nearest Ki-67- cell using a
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Wilcoxon test. This process was repeated after stratifying the cohort by IT response and
non-response and TT response and non-response.

2.7. Statistical Software

All statistical and spatial analyses were performed using R version 4.0.2 (The R
Foundation for Statistical Computing (Vienna, Austria)). The maxstat package was used
to determine optimal cut-points, survival and survminer packages used for the survival
analysis, and the spatstat, MASS, and FNN packages for spatial analysis.

3. Results

3.1. Study Population

The study population included 96 patients (median age, 60 years (IQR 33–87); male,
68 (71%); white race, 90 (94%)) (Table 1). Fifty-one patients (53%) underwent first-line
IT (18 responders, 25 resistant, and 8 indeterminate); 42 patients (44%) had first-line
TT (27 responders, 9 resistant, and 6 indeterminate); and 3 patients (3%) had first-line
combination IT/TT. Median follow-up was 54 months (IQR, 41–97) for the 37 patients (38%)
who were alive at last contact.

Table 1. Baseline patient, tumor, and treatment characteristics, n = 96 1.

Characteristic. No. (%)

Median age, range 59 (55–67)
Gender
Female 28 (29)
Male 68 (71)
Race

White 90 (94)
Black 2 (2.1)
Asian 1 (1.0)
Other 3 (3.1)

IMDC Risk Category
Favorable 20 (21)

Intermediate 56 (58)
Poor 9 (9)

Indeterminate 11 (12)
Primary tumor size (cm) 8.2 (6.0, 11.0)

ISUP Grade
2 11 (11)
3 60 (62)
4 25 (26)

Sarcomatoid Variant
No 87 (91)
Yes 9 (9.4)

Rhabdoid Variant
No 88 (92)
Yes 8 (8.3)

First Line Therapy
IT 51 (53)
TT 42 (44)

Both 3 (3.1)
Response Category

IT Resistance 25 (32)
IT Response 18 (23)

IT Indeterminate 8 (8.3)
TT Resistance 9 (9.4)
TT Response 27 (28)

TT Indeterminate 6 (6.3)

1 Statistics presented: median (IQR); Abbreviations: IMDC, International Metastatic RCC Database Consortium;
ISUP, International Society of Urologic Pathologists; IT, immunotherapy; TT, targeted therapy.

3.2. CAFs Are Highly Prevalent in the ccRCC Tumor Microenvironment

αSMA+ CAFs had the highest median cell density and H-score (density, 1904 cells/mm2

(IQR 1266–3382); H-score 35.5 (IQR 24.0–51.2)), as compared with respective values for
Ki-67+ and caspase-3+ tumor cells (Ki-67+ density, 1087 cells/mm2 (IQR, 433–1909); Ki-67
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H-score 7.0 (IQR 3.1–15.5); caspase-3+ density, 203 cells/mm2 (IQR 64–547); caspase-3+

H-score, 0.8 (IQR, 0.3–2.2)) (Wilcoxon p < 0.001 for all comparisons within density and
H-score groups) (Figure 2A).

α

rman’s correlation coefficients between 

man’s correlation coefficient of −

’ α

α

α

α

Figure 2. Geospatial metrics quantifying cell-cell relationships. (A): Boxplot diagrams depicting median cell density

(cells/mm2) and H-scores for each of the immunohistochemistry stains used in the analysis (αSMA, Ki-67, and caspase-3).

Wilcoxon p values < 0.001 for all comparisons. (B): Boxplot diagrams depicting bivariate spatial clustering, nK(25) and values

for each pairwise combination of cells for patient-level data (n = 96 patients). Values > 1.0 reflect clustering of the paired

cells, and values < 1.0 reflect dispersion. Wilcoxon p values displayed in the plot. (C): Boxplots depicting median nearest

neighbor distances in µm from the indicated pairwise cell combinations for cellular-level data (n > 500,000 cells). Wilcoxon

p values are displayed in the plot. (D): Heatmap diagram depicting Spearman’s correlation coefficients between each

immunohistochemistry-derived measurement used in the analysis. Note that the deepest blue values reflect a Spearman’s

correlation coefficient of −0.4 and the deepest red1.0.

3.3. CAFs Are Spatially Clustered with Proliferating Tumor Cells

Using the normalized Ripley’s K function, we found that αSMA+ CAFs were more
spatially clustered with Ki-67+ tumor cells than they were with caspase-3+ tumor cells
(nK(25), 1.15 vs. 1.09, respectively; p = 0.045) (Figure 2B). Caspase-3+ tumor cells were
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more spatially clustered with Ki-67+ tumor cells than they were with αSMA+ CAFs (nK(25),
1.16 vs. 1.09, respectively; p = 0.035). The amount of cellular clustering demonstrated
between αSMA+ CAFs and Ki-67+ cells was similar to that between Ki-67+ tumor cells and
caspase-3+ tumor cells (p = 0.434).

The median nearest-neighbor (NN) distance from αSMA+ CAFs to the nearest Ki-67+

cell was shorter than the distance to the nearest caspase-3+ cell (14.4 vs. 34.9 µm; p < 0.001)
(Figure 2C). The median NN distance from Ki-67+ cells to the nearest caspase-3+ cell was
shorter than the distance from αSMA+ CAFs to the nearest caspase-3+ cell (31.3 vs. 34.9 µm;
p < 0.001).

Overall, the density and spatial analyses suggest a tumor architecture in which αSMA+

CAFs and Ki-67+ tumor cells demonstrate the highest clustering and shortest NN distance,
αSMA+ CAFs and caspase-3+ tumor cells have the least amount of clustering and longest NN
distance, and cell densities are the highest for αSMA+ CAFs and lowest for caspase-3+ tumor
cells. Figure 3 shows an example of the hypothetical median tumor architecture of these 3
markers, as suggested by the distribution and spatial analysis metrics for the entire cohort.

α
α

α
α

α

Spearman’s correlations demonstrated that the α
– α

– α

α

− –

–

α

Figure 3. The median tumor architecture identified on immunohistochemistry, derived from the

marked cell density and clustering metrics described in Figure 2.

3.4. CAF Density and αSMA H-Score Are Positively Correlated with Proliferating and Apoptotic
Tumor Cells

Spearman’s correlations demonstrated that the αSMA H-score had a moderate positive
correlation (r = 0.4–0.6) with αSMA density, Ki-67 H-score, and Caspase H-score and a weak
positive correlation (r = 0.2–0.4) with caspase-3 density and Ki-67 density (Figure 2D). αSMA
density had a moderate positive correlation with Ki-67 density, caspase-3 density, and αSMA
H-sore and a weak positive correlation with Ki-67 H-score and caspase-3 H-score. Clustering
metrics and density/H-score metrics were consistently found to have either no correlation or
a weak negative correlation (r = −0.4–0). Clustering metrics at a local or global scale (nK(25)
or nK(125), respectively) were found to have a strong positive correlation with each other
within marker-types (r = 0.6–1.0). Complete information regarding pairwise correlations
between the IHC-derived metrics can be found in Figure 2D.

None of the IHC-derived metrics were significantly correlated with primary tumor
size or grade, confirming that these measures are not simply surrogates for conventionally
measures (Supplemental Figure S1).
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3.5. High αSMA, Ki-67, and Caspase-3 H-Scores Are Associated with Significantly Worse OS

Multivariable Cox proportional hazards regression analysis showed that patients with
a high αSMA H-core had significantly worse OS (HR 1.45 (1.05–2.01); p = 0.02), OS-IT (HR
1.51 (1.05–2.17); p = 0.03), and OS-TT (HR 1.46 (1.06–2.02); p = 0.012 than patients with
a low αSMA H-score. Interestingly, stratification by αSMA CAF cell density alone had
no statistically significant association with OS, OS-IT, or OS-TT (p = 0.32, 0.17, and 0.24,
respectively) compared with patients with low αSMA+ CAF cell density (Figure 4A).

 

–

: αSMA H

Figure 4. Kaplan–Meier curves for overall survival, overall survival for the date of immunotherapy

initiation, and overall survival from the date of targeted therapy initiation, with groups stratified by

(A): αSMA H-score, (B): Ki-67 H-score, and (C): Caspase H-score. Multivariable Cox regression and

log-rank p values were reported within the plots.
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Patients with a high Ki-67 H-score had significantly worse OS (HR 1.79 (1.40–2.29);
p < 0.001), OS-IT (HR 1.47 (1.13–1.91); p < 0.001), and OS-TT (HR 1.71 (1.35–2.17); p < 0.001)
than patients with a low Ki-67 H-score. Patients with high Ki-67+ cell density had signifi-
cantly worse OS (HR, 1.30 (1.06–1.61); p = 0.01), and OS-TT (HR, 1.27 (1.04–1.57); p = 0.02),
with no significant difference in OS-IT (HR, 1.21 (0.98–1.50); p = 0.08), than patients with
low Ki-67+ cell density (Figure 4B).

Patients with a high caspase-3 H-score had significantly worse OS (HR 1.33 (1.01–1.75);
p = 0.04) and OS-TT (HR 1.46 (1.14–1.88); p < 0.001), with no significant difference in OS-IT
(HR 1.19 (0.89–1.58); p = 0.24), than patients with low caspase-3 H-scores. Patients with
high caspase-3+ cell density had significantly worse OS (HR 1.26 (1.02–1.56); p = 0.03),
and OS-TT (HR 1.25 (1.02–1.53); p = 0.03), with no significant difference in OS-IT (HR 1.18
(0.95–1.46); p = 0.13) (Figure 4C).

Using Ripley’s K function, we did not find any spatial clustering metrics predictive of
OS, OS-IT, or OS-TT. The results of the multivariable Cox regression analysis assessing all
IHC-derived H-scores, densities, and spatial clustering metrics are available in Table 2.

Table 2. Multivariable Cox regressions using the covariates age and International Metastatic RCC Database Consortium risk

category for the outcomes of (A.) overall survival, (B.) overall survival from the date of immunotherapy initiation, and (C.)

overall survival from the date of targeted therapy initiation.

A.

Metric Cutoff N High N Low
Survival High

(mo.)
Survival Low

(mo.)
Cox HR 95% CI p

SMA H-score 37.028 12 84 63.2 97.6 1.45 1.05–2.01 0.02
Ki 67 H-score 7.088 35 61 54.7 97.6 1.79 1.40–2.29 <0.001

Caspase H-Score 0.834 60 36 85.8 68.6 1.33 1.01–1.75 0.04
SMA Density 1892.363 48 48 85.1 63.2 1.17 0.86–1.60 0.32
Ki 67 Density 1097.034 48 48 64.4 85.1 1.30 1.06–1.61 0.01

Caspase Density 205.198 47 49 85.8 68.6 1.26 1.02–1.56 0.03
SMA-Ki67 nK(25) 1.167 46 48 69.6 68.6 0.98 0.71–1.34 0.90

SMA-Caspase nK(25) 1.106 38 44 85.1 67.6 0.92 0.65–1.30 0.64
Caspase-Ki67 nK(25) 1.163 42 42 67.6 89.7 0.82 0.58–1.16 0.26

B.

Metric Cutoff N High N Low
Survival High

(mo.)
Survival Low

(mo.)
Cox HR 95% CI p

SMA H-score 36.346 10 60 32.6 47.6 1.51 1.05–2.17 0.03
Ki 67 H-score 7.06 27 43 33.3 56.5 1.47 1.13–1.91 <0.001

Caspase H-Score 1.137 13 57 46.7 46.7 1.19 0.89–1.58 0.24
SMA Density 1911.912 35 35 46.7 35.9 1.24 0.91–1.68 0.17
Ki 67 Density 1097.034 36 34 40.5 46.7 1.21 0.98–1.50 0.08

Caspase Density 189.285 35 35 86.1 40.5 1.18 0.95–1.46 0.13
SMA-Ki67 nK(25) 1.139 35 33 40.5 46.7 0.94 0.67–1.31 0.70

SMA-Caspase nK(25) 1.085 28 32 47.6 46.7 0.83 0.56–1.26 0.39
Caspase-Ki67 nK(25) 1.131 31 31 54.1 40.5 0.72 0.47–1.09 0.12

C.

Metric Cutoff N High N Low
Survival High

(mo.)
Survival Low

(mo.)
Cox HR 95% CI p

SMA H-score 37.2 30 47 27.2 48.9 1.46 1.06–2.02 0.02
Ki 67 H-score 7.06 10 67 23.1 55.8 1.71 1.35–2.17 <0.001

Caspase H-Score 0.742 50 27 37.2 33.1 1.46 1.14–1.88 <0.001
SMA Density 1861.339 38 39 37.2 41.5 1.19 0.89–1.60 0.24
Ki 67 Density 1107.625 38 39 27.2 41.5 1.27 1.04–1.57 0.02

Caspase Density 174.07 37 40 36.4 37.2 1.25 1.02–1.53 0.03
SMA-Ki67 nK(25) 1.156 37 38 36.4 37.2 1.05 0.76–1.45 0.76

SMA-Caspase nK(25) 1.1 31 35 34.2 37.2 1.03 0.76–1.42 0.84
Caspase-Ki67 nK(25) 1.164 35 33 33.1 38.4 0.92 0.65–1.31 0.65



Cancers 2021, 13, 3743 11 of 16

3.6. High Ki-67 Density and H-Score Are Associated with Resistance to First-Line TT

To examine specific outcomes to first-line therapy, we stratified patients by response
and resistance to TT or IT. Patients who were resistant to TT had higher Ki-67 H-scores and
higher Ki-67+ cell densities (Wilcoxon p values = 0.013 and 0.035, respectively; Figure 5).
None of the other IHC-derived metrics were associated with TT or IT response or resistance
in the first-line setting.

α
α

Figure 5. Ki-67 H-scores and densities stratified by response to first-line therapy with (A): immunotherapy and (B): targeted

therapy. The NA category represents patients that did not receive that respective therapy as a first-line agent.
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3.7. Distinct Geospatial Distributions of CAFs Are Associated with Treatment Response

Examining our cellular marker distributions, we found ccRCC and normal kidney
samples to have dramatically different kernel density distributions with respect to their
NN distances from each marked cell type (Figure 5A(i,ii)). ccRCC samples had a shorter
NN distance from αSMA+ to Ki-67+ cells, compared with normal kidney samples (13 vs.
31 µm, respectively; p < 0.001), and longer NN distance from αSMA+ to caspase-3+ cells
(32 vs. 9 µm, respectively; p < 0.001) (Figure 6A(iii)).

α
α

α cells’ NN 

–
and y axes. Solid black lines are anchored at fixed values to facilitate visual interpretation between plots. Boxplots (iii’s

α α

Figure 6. Scaled kernel density plots (i and ii’s), with the x-axis representing the distance from each αSMA+ cell to its nearest

Ki-67+ neighbor (µm) and the y-axis representing the distance from each αSMA+ cell to its nearest caspase-3+ neighbor (µm).

Each point on the plot represents an individual αSMA+ cell, and the location of the point corresponds with cells’ NN distance

from the nearest Ki-67+ and caspase-3+ neighbor. Two-dimensional kernel density is graphically depicted, overlying the

scatter plot, and has been scaled to a range of 0–1.0 in each plot. Dotted red lines reflect median values for the x and y axes.

Solid black lines are anchored at fixed values to facilitate visual interpretation between plots. Boxplots (iii’s) compare median

nearest-neighbor (NN) distances (µm) from αSMA+ to NN Ki-67+ and αSMA+ to NN caspase-3+ cells, stratified by groups as

indicated. (Ai) All ccRCC samples (n = 96), (Aii) Normal kidney samples (n = 10). (Bi) Targeted therapy responders (n = 27).



Cancers 2021, 13, 3743 13 of 16

(Bii) Targeted therapy-resistant (n = 9). (Ci) Immunotherapy responders (n = 18). (Cii)-Immunotherapy-resistant (n = 25).

(Aiii, Biii and Ciii) Boxplots representing the nearest neighbor distances for each pairwise cell-cell distance for (Aiii) ccRCC

verus normal, (Biii) Targeted therapy response versus non-response, and (Ciii) Immunotherapy response versus non-response.

TT-responsive and TT-resistant patient samples had significantly different kernel
density distributions with respect to their NN distances from each marked cell type
(Figure 5B(ii) and Figure 6B(i)). TT-responsive patient samples had a longer NN distance
from αSMA+ to caspase-3+ cells (31 vs. 21 µm, respectively; p < 0.001) (Figure 6B(iii)).

IT-responsive and IT-resistant patient samples had significantly different kernel
density distributions with respect to their NN distances from each marked cell type
(Figure 6C(i,ii)). IT-responsive patient samples had shorter NN distance from αSMA+

to caspase-3+ cells (24 vs. 35 µm, respectively; p < 0.001) (Figure 6C(iii)).

4. Discussion

Our geospatial analysis of CAF distribution demonstrated that close-proximity clus-
tering of CAFs and tumor cells might potentiate tumor cell proliferation. It also shows
that a higher density and staining intensity of CAFs and proliferating tumor cells is as-
sociated with poor OS and systemic treatment outcomes. To our knowledge, this is the
first ex vivo analysis associating CAFs with the potentiation of tumor cell proliferation in
metastatic ccRCC.

We found that CAFs were significantly more clustered with proliferating than apop-
totic tumor cells. Overall, these findings, as illustrated in Figure 3, show that close tumor
cell proximity to CAFs potentiates proliferation. Additionally, this spatial architecture
suggests that tumor cells may be in competition with one another for resources provided
by CAFs, with the tumor cells further away from CAFs succumbing to apoptosis; however,
this analysis was not designed to directly test this hypothesis.

Though this is the first study to directly measure ex vivo clustering of CAFs with
proliferating tumor cells in ccRCC, prior studies have demonstrated this effect in vitro, and
several ex vivo analyses have discovered pathways that presumably rely on close proxim-
ity [1–3,7,18]. Notably, CAFs have been found to undergo a metabolic shift when exposed
to adjacent cancer cells. This shift results in a Warburg-like glycolytic metabolism in CAFs
supplying lactate for cancer cells to fuel the Krebs cycle, which leads to anabolic growth
and tumor cell proliferation [7]. Presumably, this is a paracrine effect, with CAF-adjacent
tumor cells competing with one another for lactate. This metabolic shift is impacted via
the HIF1 pathway, which is of particular relevance in ccRCC, a disease in which the vast
majority of tumors harbor a somatic alteration in the VHL gene. The VHL alteration re-
sults in dramatically increased intracellular HIFα, which would be expected to further
enhance the aforementioned metabolic shift [26]. This well-described effect of CAFs on the
tumor microenvironment lends significant biologic plausibility to the geospatial findings
identified in this analysis.

Similarly, hypoxia in the tumor microenvironment has been identified as a significant
determinant of the extracellular matrix composition in tumors, resulting in increased
HIF1A expression. This subsequently increases the production of growth factors that can
potentiate tumor cell proliferation and trigger fibroblast activation and fibrosis [27]. In the
>80% of ccRCC tumors that harbor somatic VHL mutations, the resulting derangement of
HIFα metabolism would be expected to result in a tumor microenvironment consistent
with extreme hypoxic conditions. This resultant state would be in place regardless of the
true state of oxygen availability within the tissue [26]. This is another example of significant
overlap existing between ccRCC and CAF-potentiated molecular pathways.

Additionally, this analysis of a metastatic ccRCC cohort demonstrated strong asso-
ciations between increased CAF staining intensity and inferior OS while accounting for
age and IMDC risk category. This finding corroborates previous IHC studies of ccRCC
patients that identified an association between increasing CAF density and OS, as well
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as a more advanced stage at diagnosis. However, these cohorts did not include stage IV
patients [4–6].

While using Ki-67 staining, this analysis also identified worse OS associated with
increased density of proliferating tumor cells. Though not yet adopted into clinical practice,
increased Ki-67 staining has been shown in several studies to be associated with worse
survival in ccRCC patients across a wide range of clinical stages [14–16,28]. Cell cycle
proliferation (CCP) scoring, an RNA-seq-based gene signature score quantifying the ex-
pression level of several genes associated with tumor cell proliferation, has been recently
described as a promising prognostic biomarker for predicting poor survival and adverse
pathology in patients with clinically localized ccRCC [29,30]. Ki-67 IHC staining is a sim-
pler and less costly method than the CCP score and may yield similar biologic information.
Further studies are warranted to determine agreement and concordance between Ki-67
IHC staining and CCP score.

In addition to survival metrics, we identified several promising associations between
geospatial distributions and treatment response and resistance. Patients who were resistant
to TT had increased Ki-67 density and H-scores, which to our knowledge, has not been
previously reported. Additionally, two-dimensional kernel-density plots depicting the
NN distances of CAFs to their nearest Ki-67+ and caspase-3+ cellular neighbors yielded
density distributions that are clearly disparate between TT- and IT-responding and resistant
tumors. The difference between these distributions was primarily driven by the distance
from CAFs to their nearest caspase-3+ neighbor, with TT responders having significantly
longer CAF-caspase NN distance than patients with TT resistance and IT responders having
significantly shorter CAF-caspase NN distance than patients with IT resistance. These
novel findings suggest the possibility of distinct geospatial CAF architectures associated
with response to TT versus IT.

There are several limitations of our study that deserve mentioning. First, the patient
cohort studied was heterogeneous and included a variety of systemic treatment agents and
was determined partially on the availability of tumor samples. This limited the applicability
of our results with contemporary systematic treatment regimens. Secondly, we used a
limited number of cellular markers, which likely oversimplified the underlying biology of
the tumor microenvironment. There are limits to the practicality of examining an exhaustive
list of cellular markers in a novel study such as this and interpreting their possible clinical
impact. However, this simplification did allow us to examine these specific markers in a
robust fashion and identify possible spatial interactions deserving of future investigations.
Additionally, αSMA staining is not 100% specific for CAFs but is a marker for activated
fibroblasts that can also stain pericytes and smooth muscle cells. Additionally, CAFs are a
heterogeneous group of cells with several distinct subtypes. This study was not designed
to assess subclassifications of CAFs. Additionally, non-malignant cells such as infiltrating
immune cells can also stain positive for Ki-67, potentially resulting in false-positive staining
in some cases. Lastly, we limited our study to using 2 of the more commonly employed
spatial metrics, Ripley’s K and NN distance, while acknowledging that many other spatial
metrics have been defined in the literature.

5. Conclusions

This ex vivo geospatial analysis of CAF distribution in ccRCC samples suggests
that close-proximity clustering of tumor cells and αSMA+CAFs is associated with tumor
cell proliferation. Increased tumor cell proliferation was associated with worse OS and
resistance to TT. Patients with high αSMA+CAF density and tumor cell proliferation had
significantly worse OS from the time of immunotherapy initiation.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/

10.3390/cancers13153743/s1, Supplemental Figure S1: A. Scatter plots and best-fit lines correlating

tumor size with the immunohistochemistry-derived metrics used in the analysis. B. Correlation

coefficients and their associated 95% confidence intervals and p values correlating tumor size with

each immunohistochemistry-derived metric.
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